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Abstract
Phosphorus (P) is one of the most limiting essential nutrients for agricultural crop pro-
duction. Diminishing global reserves of rock phosphate are expected to reduce supply
and increase the cost of mineral P fertilizers, a major concern in regions where low soil
available P levels constrain crop production. In other parts of the world, intensive live-
stock production and agricultural management have resulted in high soil available
P concentrations, which contribute to environmental pollution and threaten water qual-
ity. The objective of this review was to examine the factors affecting soil available P in
agroecosystems. Physicochemical and biological controls on the soil available P, in the
context of P biogeochemical cycling, are presented. Agricultural management practices
such as crop rotations, tillage, and P fertilizer sources influence the size of the soil
available P pool, while environmental conditions such as freezing–thawing and
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wetting–drying cycles control the temporal dynamics of this pool. Methods to evaluate
soil available P in the laboratory and in situ are reviewed. Attention is given to the iso-
topic dilution method that quantifies fluxes of P ions between soil solid phase and soil
solution, which can be combined with the Freundlich kinetic equation to describe dif-
fusive soil P transfer, leading to the development of a process-based mass-balance
model to assess soil available P. This model has potential to advance scientific under-
standing about soil available P dynamics for better decision making about P fertilization
and agroenvironmental management in sustainable cropping systems.
1. INTRODUCTION

Phosphorus (P) is the secondmost essential nutrient for most crops and
is required for optimal crop production in agroecosystems. Yet, there are

questions about whether we have enough P to sustain future harvests. Fore-

casts up to 2050 indicate that the land area under crop production would

have to increase by 20% to support the demand for food for global popula-

tion and also assume an increase in P fertilizer consumption; however, the

economically available reserves of rock phosphates might be exhausted

under this scenario (Zapata and Roy, 2004). A conservative estimate, based

on industry data, indicates that the peak in global P extraction could occur by

2033 (Cordell et al., 2009; Jasinski, 2011). “Peak P” is the point at which

high quality, highly accessible reserves of rock phosphate are depleted. After

this point, the lower quality and difficulty in accessing the remaining phos-

phate reserves make them uneconomical to mine and process. Given that

demand for P fertilizers continues to grow and the supply of P fertilizer is

constrained by finite resources, we must be proactive in developing technol-

ogies to maximize the fertilizer P use efficiency in agroecosystems of devel-

oped and developing countries.

The “4-R” approach (International Plant Nutrition Institute, 2012) and

integrated soil fertility management framework (Sanginga and Woolmer,

2009) give excellent guidance on the selection of P fertilizer sources and

appropriate agronomic rates, application methods, and timing for specific

crops. For instance, sufficient P is required at the very early growth stages

of maize (Zea mays L.) to maximize yield (Grant et al., 2001). Deficiencies

in early P nutrition can affect maize leaf growth (Plénet et al., 2000), leaf

emergence, and the number of adventitious nodal roots (Pellerin et al.,

2000). Further, early deficiencies in P nutrition cannot be remedied by later

P additions (Barry and Miller, 1989). Similar observations for other grain,
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vegetable, and horticultural crops are reported in the scientific literature,

conference proceedings, and agricultural extension bulletins. Yet, the fertil-

izer P use efficiency remains relatively low, less than 50% in annually

cropped systems and around 20–30% in grasslands (Richardson et al.,

2011). Since P fertilizers remain a relatively expensive input for farmers

in developing countries, integrated soil fertility management approaches that

combine P fertilizers with locally available organic materials can be helpful in

improving crop P nutrition due to positive interactions between soil, bio-

logical, chemical, and physical properties (Sanginga andWoolmer, 2009). In

addition, P-efficient plants can also improve the fertilizer P use efficiency in

agroecosystems (Richardson et al., 2011).

The purpose of this review was to provide an overview of factors that

influence soil available P, since it is essential that P be present in a plant-

available form that can diffuse to roots and be absorbed by plants. For maxi-

mum P use efficiency, the soil available P supply would be synchronized

with crop P requirements during the growing season. Yet, interactions with

the soil physicochemical matrix and modification of soil reactions due to

agricultural management and environmental conditions can reduce the size

of the soil available P pool. Analytical methods to assess soil available P are

described, and a process-based mass-balance model with potential to predict

the evolution of soil available P in cultivated soils is presented.
2. PHOSPHORUS IN AGRICULTURAL SOILS

2.1. Importance of phosphorus in crop production

In crops, P is involved in energymetabolism and biosynthesis of nucleic acids

and cell membranes and is required for energy transfer reactions, respiration,

and photosynthesis. For optimal plant growth, plants require 0.3–0.5% P in

dry matter during vegetative growth. There is a progressive concentration of

P as it is absorbed from the soil solution (containing about 0.1 mg P l–1) to

the xylem sap (contains about 100 mg P l–1) and accumulates in seeds (up to

4000 mg P kg–1) (Marschner, 1995). Visually, P-deficient plants have less

leaf expansion, reduced leaf surface area, and fewer leaves, which highlights

the need for adequate P nutrition to sustain plant growth and functions.

Plant tissue P is present as nucleic acids and nucleotides, phosphorylated

intermediates of energy metabolism, and membrane phospholipids. In seeds,

P is stored as phytic acid, also known as phytate or phytin, with values

between 0.5% and 5.0% (w/w) in cereals and legumes (Park et al., 2006).
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Phytate accounts for 50–80% of total P in many seeds and is present as a

mixed salt with cations such as potassium, magnesium, manganese, iron,

and zinc. Phytate also acts as a reservoir of inositol phosphate and controls

inorganic phosphate homeostasis in developing seeds and seedlings (Lott

et al., 1995).
2.2. Phosphorus cycle in the plant–soil system
The P cycle in a cropped field is characterized by transformations among

several P chemical forms. Pool sizes of these P forms vary by five to six orders

of magnitude. Soil P compounds can be categorized as follows: (1) soluble

inorganic and organic P in the soil solution; (2) weakly adsorbed (labile)

inorganic and organic P; (3) insoluble P, which is associated with Ca in cal-

careous and alkaline soils or bound to Fe and Al in acidic soils; (4) P strongly

adsorbed and/or occluded by hydrous oxides of Fe and Al; and (5) insoluble

organic P in undecomposed plant, animal, and microbial residues within the

soil organic matter (SOM) (Stevenson and Cole, 1999). In the plow layer of

cropped soils, about 70% of the total P is present in inorganic forms, more

than 20% is in organic forms, and only few percentages are in the soil micro-

bial biomass (bacteria and fungi) (Grant et al., 2005).

AsimplifiedPcycle ispresented inFig.2.1, showingthemajorPpools in the

soil–plant system, P exports and imports, and internal transformations under

field crops in a developed country. On average, maize crops exported

30 kg P ha–1 year–1, of which two-thirds are exported out of the field

(20 kg P ha–1 year–1) and the remainder are returned to the soil with crop res-

idues (aerial parts¼5 kg P ha–1 year–1 and roots¼5 kg P ha–1 year–1). Sources

and amounts of P imported to typical field crops are mineral fertilizers

(12 kg P ha–1 year–1), animal manure (14 kg P ha–1 year–1), urban sewage

sludge (0.5 kg P ha–1 year–1), urban composts (0.05 kg P ha–1 year–1),

P in seeds (0.1 kg P ha–1 year–1), and atmospheric deposition (0–0.5 kg P ha–1

year–1). Transport processes such as runoff and subsurface flow can account for

the loss of 0.05–2.5 kg P ha–1 year–1, while leaching and migration of sedi-

ments containing P toward the subsoil (0.5 kg P ha–1 year–1) can also represent

significant losses of P from the plough layer.

Agricultural producers rely on P imports from various sources to increase

crop production, but the amounts required vary from field to field because of

heterogeneity in the inherent P fertility of agricultural soils due to parent

material, soil types, and agricultural practices. As a result, the concentration

of P in the plow layer (0–20 cm depth) of a typical maize field may vary from
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Figure 2.1 Annual flows and compartments of P involved in the P cycle in a temperate
agroecosystem under maize (Zea mays L.) production. Data (in kg P ha–1) are averages
obtained from the scientific literature of fields that were conventionally tilled and fer-
tilized with mineral P fertilizer in the long term (decades) in temperate climates.
Adapted from Morel (2002).
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100 to 2000 mg P kg–1 soil, representing about 665–8820 kg P ha–1 dep-

ending on the soil bulk density (Grant et al., 2005). Yet, the soil solution

only contains about 0.2 mg P l–1, meaning that most of the soluble

P taken up by crops originates from the soil solid phase (Grant et al.,

2005). On average, 29.8 kg P ha–1 year–1 is mobilized from the soil solid

phase to replenish the soil solution as it is depleted by plant P uptake; this

is supported by isotope dilution studies, showing that the isotopically

exchangeable P ion is a good approximation of the soil available P pool

(Morel and Fardeau, 1991; Morel and Plenchette, 1994; Zapata and

Roy, 2004). Diffusion is the dominant mechanism whereby exchangeable

P moves between the soil solid phase and the soil solution, across a
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concentration gradient (Barber, 1995). Other possible reactions that mobi-

lize P during the growing season are weathering, dissolution, desorption,

and mineralization.

The P content is about 10 times greater in the plow layer than in the

subsoil due to regular (generally annual) applications of P fertilizers and

animal manure as well as the recycling of crop residues (aerial parts and

roots). Phosphorus losses through runoff and leaching are relatively small,

compared to the amount of P imported or recycled in the plow layer, in part,

because soil minerals have strong P-binding capacity. Biological activity

contributes to P solubilization through mineralization, weathering, and

other physicochemical reactions so that the plow layer is the major source

of soil available P for crops. However, the subsoil can also contribute soluble

P for uptake by growing plants when P is translocated from the subsoil to the

plow layer by roots and other microorganisms (Richardson et al., 2011;

Watson and Matthews, 2008).
2.3. Definition of soil available phosphorus
Soil available P is the fraction of total P in soil that is readily available for

absorption by plant roots. It is estimated in the laboratory using extracting

solutions that rely on the dual contact time between the soil and the

extracting solution (kinetic reaction) to capture inorganic P from the soil

solution and the soil solid phase during a predetermined period of time

(minutes to hours). The dominant inorganic P form extracted from soil is

orthophosphate (HPO4
2� and H2PO4

� ions) that can be absorbed directly

by plant and microbial cells. Polyphosphates (including pyrophosphate) are

another form of inorganic P that may be present in soils, of biological origin,

and generally in low concentrations relative to orthophosphate (Condron

et al., 2005; Fardeau et al., 1988).

The definition of soil available P given above is accurate for P-rich soils

(generally in developed countries) where years of inorganic P fertilizer appli-

cations result in large amounts of inorganic P associated with the soil solid

phase and accounting for most of plant P nutrition. In regions of developed

countries where intensive livestock production occurs, disposal of animal

manure on a relatively small land base has led to massive accumulation

of soil available P, as well as more SOM and a buildup of organic

P compounds. The soil available P in such soils is probably a combination

of inorganic P derived from the soil solid phase and P mineralized from the

breakdown of soil organic P compounds. In the P-depleted soils of
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developing countries where historical P fertilizer applications were limited,

crop P nutrition relies more on other soil processes such as mineralization of

SOM, weathering, and dissolution of P-bearing minerals to replenish the

P ions in soil solution. The shortcomings of our definition of soil available

P for heavily manured soils and soils in developing countries are demon-

strated by the failure of models relying on sorption/desorption processes

to characterize soil available P and predict crop P acquisition in P-poor soils

(Hinsinger, 2001;Mollier et al., 2008). Further research is needed to account

for the role of organic P (Achat et al., 2010; Oehl et al., 2001), other organic

compounds (Giles et al., 2011; McDowell, 2003; McDowell et al., 2008;

Turner et al., 2003, 2005), and interactions between the plant roots and

the rhizosphere (Richardson et al., 2011) on the soil available P in

such agroecosystems.
2.4. Factors affecting soil available phosphorus
The major constraint in achieving adequate P nutrition in crops arises from

the fact that soil available P diffuses slowly through the soil solution

toward roots, complicated by the fact that migrating P ions are susceptible

to chemical fixation in most agricultural soils. These processes result in low-

P use efficiency of mineral fertilizers applied to cultivated soils, where less

than 50% of the fertilizer P is absorbed by crops during a growing season.

This section describes how soil available P is affected by soil properties

(chemical, physical, and biological), agricultural management practices,

and environmental conditions.
2.4.1 Soil properties
Soil pH is the major factor affecting the speciation and availability of P ions

in cultivated soils (Lindsay, 1979). At soil pH below 7.2, the dominant

orthophosphate ion species in soil solution is H2PO4
�, while HPO4

2� is

the dominant ion in soil solution at pH greater than 7.2. The solubility of

P ions in cultivated soils is affected by the presence of anions that compete

for ligand-exchange reactions and metals (Ca, Fe, and Al) that coprecipitate

P ions (Hinsinger, 2001). The binding affinity between P and other anions

and metals in soil solution and on soil surfaces is also controlled by pH and

affects the soil available P concentration.

Soil pH fluctuates when plants and other biota absorb ions from the soil

solution. For example, the cation–anion uptake ratios alter soil pH in the

rhizosphere because cation uptake results in Hþ released from the root
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surface, whereas anion uptake is accompanied by release of OH� to maintain

electrical neutrality. Microbial reactions also generate Hþ ions. For example,

ammonium N applied to agricultural soils is often transformed to nitrate by

ammonia oxidizers and nitrifiers, which produces 2 mol of Hþ for every

mole of nitrate (NO3
�) released by the microbially mediated nitrification

reaction. While NO3
� absorption by plant roots is accompanied by the

release of OH� into the rhizosphere by root cells, which partially neutralizes

excess acidity from nitrification, the net effect is soil acidification whenmore

NO3
� is produced than absorbed by plant roots or when NO3

� is lost from

the rhizosphere through leaching. One consequence of soil acidification is

an increase in soluble Al and Fe ions that may precipitate with H2PO4
� and

HPO4
2�, decreasing soil available P to plants (Arai and Sparks, 2007; Bolan

et al., 2003; Stroia et al., 2011; Tran et al., 1988).

Parent material is important in the soil P cycle because the weathering of

primary minerals contributes to the soil available P pool (Cross and

Schlesinger, 1995). For example, in Aridisols with low SOM and high pH,

weathering of calcium carbonate minerals is the primary geochemical

reservoir of soil available P (Lindsay, 1979). In highly weathered and acidic

Ultisols and Oxisols, the presence of sesquioxides results in greater chemical

fixation of P and decreases soil available P (Sanchez et al., 1982; Sollins et al.,

1988). In young and slightly weathered soils, hydroxyapatite is themajor inor-

ganic reservoir of soil available P, whereas in moderately weathered soils, soil

available P is derived mostly from organic compounds or secondary

clay minerals.

Soil available P is affected by soil physical properties such as texture. For

soils with the same P saturation index, fine-textured (>300 g clay kg�1) and

gleyed soils tended to release more soil available P with water extraction than

coarse-textured (�300 g clay kg�1) and podzolized soils (Pellerin et al.,

2006). Soil available P is also influenced by soil structure due to interactions

between soluble P and the soil solid phase associated with soil aggregates and

SOM (Green et al., 2005, 2006; Messiga et al., 2011; Wright, 2009).

Biological controls on soil available P are evident in the rhizosphere, due

to root-induced effects on soil physicochemical properties and interactions

with soil microflora. Modification of root morphology and architecture to

promote better exploration of the P-rich topsoil enhances P acquisition

(Lynch and Brown, 2001). Such traits are found among maize, bean

(Phaseolus vulgaris L.), wheat (Triticum aestivum L.), and soybean (Glycine

max (L.) Merr) and, in many cases, resulted in a significant increase of

P uptake (Bonser et al., 1996; Manske et al., 2000).
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Chemicals released from the rhizosphere such as protons, carboxylates,

phosphatases, and phytases are important in solubilizing P from sparingly

available pools in soil (Marschner, 1995; Shen et al., 2011). The exudation

of organic anions is closely linked with plant species that produce clusters of

rootlets with abundant root hairs (Lambers et al., 2010). This root trait

allows plants to effectively mine P from severely weathered soils where

recycling of P from above-ground litter and below-ground root turnover

was the sole P source and from highly weathered and strongly P-sorbing soils

with low concentrations of soil available P (Lambers et al., 2006). Clustered

roots are effective for capturing P ions mobilized when organic acids induce

the dissolution of P ions from insoluble precipitates like Ca3(PO4)2 or

AlPO4 (Zhang et al., 1997). Cluster roots are common in plants of the

Proteaceae, Cyperaceae, and Restionaceae families, but there are some

examples among agricultural crops. White lupin (Lupinus albus) in the family

Fabaceae develops cluster roots when grown on young volcanic soils with

low concentrations of soil available P, such as in Chile (Huyghe, 1997). The

cluster root trait is generally inhibited as the soil available P concentration

increases (Redell et al., 1997), and therefore, this trait has limited applicabil-

ity to improve P fertilizer use efficiency, even on agricultural soils with high

P-sorbing capacity (Simpson et al., 2011).

Mycorrhizal symbiosis produces a dense hyphal network and extends the

absorptive surface of plant roots, effectively reducing the distance that P ions

must diffuse to reach the rhizosphere. About 74% of angiosperms form sym-

biotic associations with arbuscular mycorrhizal fungi (Brundrett, 2009), and

all agricultural crops are angiosperms. For most agricultural plants, mycor-

rhizal association is the rule rather than exception whereby water, P, and

other nutrients are transferred through the mycorrhizal mycelium to plants

and, in return, the fungi receives carbohydrates from the host plant. Isotopic

dilution studies provide evidence that mycorrhizal and nonmycorrhizal

plants rely on the same P source from soil (Bolan, 1991; Yao et al.,

2001). However, some authors indicate that arbuscular mycorrhizal fungi

enhance access to P compounds that normally would be sparingly soluble

or insoluble to plants (Koide and Kabir, 2000; Tawaraya et al., 2006).

The main difference between mycorrhizal and nonmycorrhizal plants is

the larger soil volume explored by mycorrhizal plants permits greater

P uptake through physical interception. Studies also showed that within

the same genotype, plants with branched root systems, very fine roots,

and long hairs tend to show relatively little improvement in growth when

they are colonized by mycorrhizal fungi, even when soil available P is low
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(Schweiger et al., 1995). In contrast, genotypes with constrained root sys-

tems exhibit greater P uptake with mycorrhiza, compared to non-

mycorrhizal plants, especially in soils with low soil available P (Thomson,

1987). The beneficial effects of mycorrhizal symbiosis for crop P uptake

can be very important for agricultural sustainability.

Soil microorganisms such as P-solubilizing bacteria and fungi also affect

soil available P through direct solubilization of P from the soil solid phase

(Richardson et al., 2009). The ability of these free-living microorganisms

to mobilize P ions has mainly been studied in laboratories media with spar-

ingly soluble Ca phosphate, rock phosphate containing hydroxy- and fluor-

apatites, and Fe and Al phosphates such as strengite and variscite. Enhanced

growth and P nutrition of plants inoculated with P-solubilizing microorgan-

isms were observed in controlled studies (Whitelaw, 2000) but are more dif-

ficult to demonstrate cropped field soils (Wakelin et al., 2006; Whitelaw

et al., 1997). The lack of consistent response to P-solubilizing microorgan-

isms highlights a research gap regarding the mechanisms whereby free-living

microorganisms influence soil available P. Isotopic dilution studies of

P mobilization from sparingly soluble or insoluble soil P pools and the

subsequent uptake by plant roots could prove helpful in understanding

this phenomenon. Of course, these observations do not contradict the

well-established role of microorganisms in degrading SOM andmineralizing

P ions from organic compounds (Conyers and Moody, 2009; Cornish,

2009), a biochemically driven reaction that increases the soil available

P concentration.

2.4.2 Agricultural management
Soil available P is affected by agricultural management practices like crop

rotation, tillage, and fertilization. In this review, we examine these factors

individually, while realizing that producers will develop a cropping system

with specific crop rotations, tillage, and fertilizer sources according to their

production goals and economic considerations. There is, however, relatively

little information in the scientific literature where divergent cropping sys-

tems are compared since most agronomic trials are set up to evaluate the

treatment effects separately, or in simple combinations. More complex agro-

nomic trials or on-farm research experiments could be designed to validate

the effect of agricultural management on soil available P.

Crops varying in root systems explore different layers of the soil profile.

Residues from different crops vary in their mineralization rates and therefore

contribute differently to the formation of SOM. Temporal and spatial
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arrangements of crops in the rotation also affect soil available P (Karazawa

and Tabeke, 2012). As discussed earlier, growing mycorrhizal plants in fields

with low soil available P improves crop P nutrition. Another benefit of

growing mycorrhizal host plants is the maintenance of a large population

of indigenous mycorrhizal fungi, which facilitates the colonization of sub-

sequent crops and their P nutrition. Greater P uptake and higher soil avail-

able P concentration in the plow layer of arable soils under a cereal–legume

rotation system (Kabengi et al., 2003; Villamil et al., 2006) were attributed to

maintaining the indigenous population of mycorrhizal fungi, since both

crops were mycorrhizal host plants. Introducing nonhost plants in the rota-

tion to break pest cycles associated with continuous cropping reduces the

population of mycorrhizal fungi and can be detrimental for mycorrhizal col-

onization of subsequent crops and their P nutrition. An alternative is to

intercrop mycorrhizal host plants with nonhost plants to increase indigenous

mycorrhizal fungal populations, P uptake, and productivity of subsequent

crops (Karazawa and Tabeke, 2012). Zheng et al. (2002) showed that inor-

ganic and organic P-NaHCO3 fractions, which are considered part of the

soil available P pool, are increased by crop rotations. However, other studies

showed a decrease in soil available P in cereal–legume rotations (Campbell

et al., 1995; Riedel et al., 1998; Soon and Arshad, 1996). These results high-

light the need for further research to fully understand how site-specific abi-

otic and biotic factors controlling soil available P are modified by choices of

crops in a particular sequence.

Tillage involves plowing and harrowing, which mix P imported in

amendments and P recycled from crop residues throughout the plow layer

(typically the top 10–20 cm) of agricultural soils. When producers shift to

conservation tillage or no-till systems, soil mixing and disturbance occur

in discrete zones (e.g., in the tilled seedbed of a zone tillage system or in

the planted row and fertilizer bands of a no-till system). Consequently,

no-till systems are characterized by P stratification with depth, with high

concentrations of soil available P in the top few centimeters of topsoil

and decreasing concentrations lower in the soil profile (Cade-Menun

et al., 2010; Messiga et al., 2012a). Phosphorus accumulation at the soil sur-

face is the result of minimal mixing of surface-applied fertilizers and crop

residues, limited vertical movement of P in most soils, and transfer of

P from deep-soil layers to shallow layers through crop nutrient uptake, most

of which becomes concentrated in residues left on the soil surface (Borges

and Mallarino, 2000). Phosphorus stratification is of concern because lower

soil available P concentrations at depth in the rooting zone may reduce crop
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yields (Lupwayi et al., 2006), whereas high soil available P concentrations

near the soil surface increase the risk of dissolved P loss in surface runoff

(Sharpley and Smith, 1994).

Land under permanent grassland exhibits the same type of P stratification

as no-till systems because fertilizers and crop residues are applied to the soil

surface and there is limited mixing with topsoil (Blake et al., 1999; Malhi

et al., 2003; Watson and Matthews, 2008). Soil available P accumulation

was reported in a 10-year study of P balances on grazed grassland swards

in Northern Ireland, where there was a gain of 17 mg P kg–1 year–1 in

the 0- to 5-cm soil layer and only 2 mg P kg–1 year–1 in the 5- to 10 cm soil

layer (Watson andMatthews, 2008). In a long-term grazed grassland in south-

west England, the soil available P (Olsen P) concentration was 10-fold greater

in the 0- to 2-cm soil layer than at depths below 45 cm (Haygarth et al., 1998).

Fertilizer recommendations for grasslands in many European countries are

based on the soil available P concentration in the 5- to 10-cm soil layer

(Stroia et al., 2011), which should account for P accumulation at the soil sur-

face for better protection of environmental quality.

Phosphorus fertilizer sources include mineral and organic fertilizers.

Mineral P fertilizers are derived from rock phosphates, generally apatite.

Morocco/Western Sahara possesses 70% of world reserves of apatite (esti-

mated at 71,000 million metric tons), followed by Iraq (8%) and China

(5%). Globally, the top producers of mined rock phosphates in 2011 were

China (38%), United States (15%), Morocco (14%), and Russia (6%)

(United States Geological Survey, 2012). Since rock phosphate is sparingly

soluble, it is reacted with sulfuric acid to produce concentrated phosphoric

acid for the formulation of water-soluble P fertilizer. Mineral P fertilizer

sources include dry granulated fertilizers (simple superphosphate, triple

super phosphate, diammonium phosphate, and monoammonium phos-

phate) and fluid fertilizers (superphosphoric acid, polyphosphates, ammo-

nium polyphosphates, and suspensions). When applied to soil, mineral

P fertilizers contribute orthophosphate ions directly to the soil solution,

thereby increasing the soil available P concentration. Since the efficiency

of mineral P fertilizer is fairly low (20–50% of the P applied is absorbed

by crops during the growing season; Richardson et al., 2011) and most of

the unused P is retained in the soil solid phase, repeated application of min-

eral P fertilizer increases the soil available P concentration.

Organic P fertilizers comprise a diverse array of organic materials that are

fresh or composted before they are applied to soil. Farmyard manure, veg-

etable residue, and industrial by-products such as paper mill biosolids are

potential sources of organic P fertilizer for agriculture. Fresh swine manure
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contains more total P and soluble inorganic P on an equivalent mass basis

than most other farmyard manures (Barnett, 1994; Peperzak et al., 1959).

Liquid swinemanure gave the greatest increase in soil available P (Mehlich-3

P) of the organic P fertilizers applied for silage maize production in eastern

Canada (Gagnon et al., 2012). Another organic P fertilizer is paper mill bio-

solids, the solid residues generated from pulp and paper mills that are rich in

organic matter (cellulose, hemicellulose, and lignin). The effect of fresh

paper biosolids application on soil available P is variable and affected by

the amount applied, frequency of application, crops grown, and the chem-

ical composition (total P and C:P ratio) of the biosolids (Gagnon and Ziadi,

2004; Gagnon et al., 2010, 2012). After 6 years of repeated paper mill bio-

solids application, Fan et al. (2010) reported a significant linear increase of

soil available P as measured by anionic exchange membranes. Simard

et al. (1998) and Rato Nunes et al. (2008) also reported that the application

of paper mill biosolids significantly increased soil available P, owing to the

mineralization of organic P associated with the decomposition of the bio-

solids. However, Vasconcelos and Cabral (1993) indicated that high appli-

cations of combined primary/secondary paper mill biosolids did not have

any effect on soil available P due to the high C:P ratio of the biosolids.

Composting is often employed to reduce the total mass and facilitate the

handling of organic fertilizers, but it can also alter the chemical fractions of

P within the organic material, thereby affecting the contribution to soil

available P. Zvomuya et al. (2006) found that mature cattle manure compost

contained lower percentages of labile P and higher percentages of nonlabile

P (HCl-P) than the original fresh cattle manures. In composted solid urban

waste, 30–50% of the total P was in inorganic P forms (extracted by water

and NaHCO3) and the remainder was bound in relatively insoluble com-

pounds (Frossard et al., 2002). Although Miller et al. (2010) reported an

increase of soil available P that exceeded the maximum agronomic limit

of 60 mg P kg–1 for Alberta (western Canada) following land application

of fresh and composted cattle manure, addition of composts with high C:

P ratios can reduce soil available P for weeks or months (Cooperband

et al., 2002; Frossard et al., 2002; Gagnon and Simard, 1999). This suggests

that significant P immobilization may occur in compost-amended soil. Dur-

ing a 13-week incubation study using 26 composts (23 on-farm and 6 indus-

trial composts), Gagnon and Simard (2003) reported that P was strongly

immobilized from week 1 to week 13 in the soils receiving partially com-

posted cattle manure on wood bedding. Soil available P (Mehlich-3 P) was

greatest with mature dairy manure composts. With time, the immobilized

P was released into soil solution through microbial turnover, as there was
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an increase in soil available P concentrations in soil amended with poultry

litter, vegetable residue, and sheep manure composts after 13 weeks

(Gagnon and Simard, 2003).

2.4.3 Environmental conditions
2.4.3.1 Effects of freezing and thawing cycles on soil available phosphorus
Seasonally snow-covered temperate soils are subject to freezing and thawing

cycles (FTCs), particularly during years with little accumulated snowfall and

during the late winter and early spring periods (Freppaz et al., 2007). The

FTCs can stimulate soil mineralization and could therefore be one factor

regulating the soil available P concentration in early spring. Lysis of plant

cells releases soluble P from plant residue (Bechmann et al., 2005) and other

organic compounds (Ron Vaz et al., 1994), with substantial amounts of soil

available P (soluble-reactive P, dissolved P) released from alfalfa (Medicago

sativa L.) and quackgrass (Agropyron repens L.) residues following an FTC

(Roberson et al., 2007; Wendt and Corey, 1980). Timmons et al. (1970)

reported that up to 80% of total plant P in bluegrass (Poa pratensis L.) residue

was released in a water-soluble form after plant residue underwent various

FTCs. Soil organic P is also susceptible to mineralization during FTCs, as

intact cores of topsoil collected from no-till and conventional tillage systems

released more soil available P (water-extractable P, Mehlich-3 P) with an

increase in the number of FTCs (Messiga et al., 2010a). Given the projected

increase in mean air temperatures for the coming decades, temperate and

cold areas may experience an increasing number of FTCs due to reduced

snow cover. This is expected to increase soil available P concentrations in

early spring, but whether soluble P would benefit early season crop growth

or be lost in runoff and drainage water during the spring thaw remains to

be determined.

2.4.3.2 Effects of drying and rewetting cycles on soil available phosphorus
In most agroecosystems, soil water content changes rapidly following rain-

fall, particularly after high-intensity, short-duration events. The resulting

drying and rewetting cycles affect the soil available P concentration. The

increase in soil available P during the rewetting phase results from release

of organic P from lysed cells of microbial biomass (Turner and Haygarth,

2001). In addition, occluded organic matter from disturbed soil aggregates

also releases organic P compounds into soil solution. Mineralization of

organic P to inorganic P can increase the soil available P concentration,

but the effect may be transient due to chemical fixation or immobilization

of P from soil solution. Soil rewetting is accompanied by rapid microbial
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growth and respiration, presumably due to new microbial cells utilizing sol-

uble substrates, including soluble organic P compounds that were released

during the drying phase. Barrow and Shaw (1980) showed that the effects

of a drying event (60 �C) on the soil available P concentration were

short-lived, as the soluble P concentration returned to pretreatment levels

after 1 day of soil rewetting. There is relatively little information published

on how drying and rewetting cycle influences dynamics of soil P pools and

the long-term impacts of climate change (more frequent drought or more

intense rainfall events, depending on the region) on soil available

P concentrations in agroecosystems.

3. SOIL AVAILABLE PHOSPHORUS MEASUREMENTS

The previous sections have defined and explained the factors that
affect the soil available P, but how should it be measured? Ideally, agricul-

tural producers would like to be able to predict soil available P throughout

the growing season to ensure an adequate supply of P fertilizer, considering

the soil properties, agronomic practices, and environmental conditions that

control the soil available P concentration in their region. Practically, it is dif-

ficult to estimate soil available P during the growing season, but there are a

number of laboratory and in situmethods giving measurements of soil avail-

able P that are well correlated with the P fertilizer requirements of various

crops. These will be reviewed in the following sections.

3.1. Laboratory methods for assessing soil
available phosphorus

3.1.1 Chemical extraction methods
Chemical extraction methods selectively remove P compounds (generally

soluble and weakly adsorbed P compounds) from soil to estimate the

P that is available for plants’ uptake during a growing season, the soil avail-

able P concentration. Extracted P, or soil test P, is calibrated empirically

against actual crop uptake or likelihood of response to fertilization

(Heckman et al., 2006; Jokela et al., 1998; Maguire et al., 2005;

McKenzie et al., 2003; Morel et al., 1992; Saarela, 2002; Simard et al.,

1996). At the present time, there is little national or regional emphasis on

soil test calibration research, partly because it is perceived academically as

lacking originality and as low priority, and there are limited funds to do this

work (Heckman et al., 2006). As a consequence, there are dozens of soil test

P methods in use around the world (Tables 2.1 and 2.2). In Canada, up to

four soil test P methods are used by university and private laboratories,



Table 2.1 Summary of soil test P methods used in Canada and the United States

Country Province/state
Soil test
P method References

Canada New Brunswick Mehlich-3 Mehlich (1984)

Nova Scotia

Prince Edward

Island

Quebec

Manitoba Olsen Olsen et al. (1954)

Ontario

Alberta Kelowna van Lierop (1988) and

Ashworth and Mrazek

(1995)
British Columbia

Saskatchewan

Newfoundland &

Labrador

Bray-2 Bray and Kurtz (1945)

United States Delaware Mehlich-3 Sims et al. (2002) and

Sharpley et al. (2003)
Maryland

New Hampshire

New Jersey

Pennsylvania

Massachusetts Morgan Ketterings et al. (2002)

New York

Rhode Island

Connecticut Modified

Morgan

Jokela et al. (1998)

Maine

Rhode Island

Vermont

Midwestern states Bray-1

North Central

states

Western states Olsen
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Table 2.2 Summary of soil test P methods used around the world
Country Soil test P method References

Austria Calcium ammonium

acetate

Tunney et al. (2003)

Double lactate

Water extraction

Belgium Ammonium lactate Van Den Bossche et al. (2005)

Calcium ammonium

lactate

Denmark Olsen

Finland Acid ammonium acetate Saarela (2002)

France Dyer Dyer (1894) and Joret and Hebert (1955)

Joret Hebert

Olsen

Germany Calcium ammonium

lactate

Tunney et al. (2003) and Vanderdeelen

(2002)

Double lactate

Water extraction

Greece Bray-2

Olsen

Hungary Ammonium acetate

Italy Olsen

Ireland Ammonium acetate

Netherland Ammonium acetate Vanderdeelen (2002)

Water extraction

Norway Ammonium acetate

Poland Double lactate Vanderdeelen (2002)

Romania Ammonium lactate

Spain Bray-2

Olsen

Sweden Ammonium lactate

Continued
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Table 2.2 Summary of soil test P methods used around the world—cont'd
Country Soil test P method References

Switzerland Adapted method of

Cottenie

Cottenie et al. (1982)

UK Olsen Olsen et al. (1954)

Latin

America

Bray-1 Ghosh et al. (2001) and da Silva et al.

(2010)
Morgan

Olsen

Asia Bray-1 Song et al. (2011)

Mehlich-3

Morgan

Olsen

Africa Bray-1 Buresh et al. (1997)

Mehlich-3

Morgan

Olsen

Australia Colwell Colwell (1963) and McIvor et al. (2011)

Bray-2

New

Zealand

Bray-2
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including the Mehlich-3, Olsen, Kelowna, and Bray-2 methods. In the

United States, five soil test P methods are common: Mehlich-3, Olsen,

Bray-1, Morgan, and modified Morgan methods. Across Europe, up to

11 methods are used by analytical laboratories, while in Africa, Asia, and

Latin America, the main methods used are Bray-1, Mehlich-3, and Olsen.

In Australia and New Zealand, the Olsen, Colwell, and Bray-1 methods are

the standard for measuring soil test P. Table 2.3 describes some characteris-

tics of the most widely used soil test methods.

3.1.2 Water extraction methods
Chemical extractants are widely used to assess soil test P, but have certain

drawbacks. Not only do chemical extractants remove P ions present in soil

solution, but they also react and dissolve some P ions associated with the soil



Table 2.3 Selected characteristics of soil test P methods widely used in Canada, the United States, and around the world

Methods Extractant

pH-
extracting
solution

Volume-
to-mass
ratio Soil type Soil pH Minerals

Shaking
time Comments

Bray 1 0.5 N HClþ1 N NH4F 3.0 7:1 Acidic; slightly

acidic to slightly

alkaline

<6.0;

6.0–7.2

Al-P,

Fe-P,

Mn-P,

Mg-P,

Ca-P

1 min Extracts

P only

Mehlich 1 0.05 N HClþ0.025 N

H2SO4

1.2 4:1 Acidic; slightly

acidic to slightly

alkaline

<6.0;

6.0–7.2

Al-P,

Fe-P,

Mn-P,

Mg-P,

Ca-P

5 min Multielement

extracting

solution

Mehlich 3 0.015 N

NH4Fþ0.025 N

NH4NO3þ0.2 N

CH3COOHþ0.013 N

HNO3þ0.001 N

EDTA

2.3 10:1 Acidic; slightly

acidic to slightly

alkaline

<6.0;

6.0–7.2

Al-P,

Fe-P,

Mn-P,

Mg-P,

Ca-P

5 min Multielement

extracting

solution

Olsen 0.5 M NaHCO3 8.5 20:1 Slightly acidic to

slightly alkaline;

alkaline, calcareous

<6.0;

6.0–7.2;

>7.2

Al-P,

Fe-P,

Mn-P,

Mg-P,

Ca-P

30 min Extracts

P only

Continued
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Table 2.3 Selected characteristics of soil test P methods widely used in Canada, the United States, and around the world—cont'd

Methods Extractant

pH-
extracting
solution

Volume-
to-mass
ratio Soil type Soil pH Minerals

Shaking
time Comments

Ammonium

acetate

1 N NH4OAC 7 20:1 Alkaline; calcareous <6.0;

6.0–7.2

Mg-P,

Ca-P

30 min Multielement

extracting

solution

Water 7 10:1;

60:1

Acidic; slightly

acidic to slightly

alkaline; alkaline;

calcareous

<6.0;

6.0–7.2

Al-P,

Fe-P,

Mn-P,

Mg-P,

Ca-P

24 h Extracts

dissolved

P only

Author's personal copy
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solid phase, without differentiating between the two phases. In addition,

chemical extractants can be either more acidic or more alkaline than the soil

solution and, therefore, could extract P ions from the solid phase that are not

likely to be available to plants under field conditions. These reactions mean

that chemical extractions can overestimate soil available P. Distilled water as

an extractant avoids these problems (Pote et al., 1995) since only P ions pre-

sent in the soil solution or soluble in water are removed. Luscombe et al.

(1979) described the method for using distilled water as an extractant to

assess soil available P and reported a high correlation between the water-

extractable P concentration and dry matter yield response in ryegrass.

Water-extractable P was also significantly correlated with the cumulative

P budget following 17 years of maize monoculture in France (Messiga

et al., 2010b).

Water extraction methods rely on volume-to-mass ratios varying from

1-to-5 (Koopmans et al., 2001), 1-to-10 (Fardeau, 1996; Morel et al.,

2000; Self-Davis et al., 2000), and 1-to-60 (Sissingh, 1971) and different

shaking durations (between 1 and 72 h) to assess the soil P concentration.

Since distilled water may dissolve P ions and organic P associated with

organomineral colloids (Hens and Merckx, 2002; Sinaj et al., 1998), it

can overestimate P ions present in the soil solution. Filtering soil suspensions

through a 0.02-mm membrane to remove colloidal P is recommended in

water extraction methods. Dry soil samples that are rewetted with distilled

water for water extraction are likely to give more soil available P than fresh

soil samples due to the release of P from the microbial biomass and lower

reactivity of metal oxides (Haynes and Swift, 1985; Turner and Haygarth,

2001). McDowell and Sharpley (2003) used dilute CaCl2 (0.01 M) to deter-

mine the soil solution P concentration because this method generally

extracts less P than distilled water.

3.1.3 Phosphorus fractionation methods
The first attempts to characterize soil P fractions in the 1950s (Chang and

Jackson, 1957) focused on inorganic P compounds in calcareous soils and

sediments. The procedure was later modified by Fife (1962), Peterson

and Corey (1966), and Smillie and Syers (1972) to improve the extractability

of inorganic P fractions from soils and then adapted to describe the organic

P fractions in cropped soils (Bowman and Cole, 1978). A significant mod-

ification of the method allowed the simultaneous determination of both

inorganic and organic P fractions from a single soil sample (Hedley et al.,

1982), and subsequent developments permit a fumigation step to quantify
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the microbial P pool. Recently, Tiessen and Moir (2007) adapted the use of

anion exchange resin to quantify the soil solution P.

Although P fractionation methods are widely used to understand the bio-

geochemical cycle of soil P in natural ecosystems (Cross and Schlesinger,

1995), there is interest in understanding how these P fractions could be related

to soil available P. In most studies of agricultural soils, inorganic and organic

P fractions are grouped into available, nonavailable, and recalcitrant pools (Fan

et al., 2010). Soil available P is assumed to comprise the resin-P, NaHCO3-P,

and NaOH-P pools. The nonavailable and recalcitrant P pools are HCl-P and

residual-P. The P fractionation method is more descriptive than soil test

Pmethods (chemical extractants andwater extraction), but it takes several days

to complete the fractionation procedure, which is too long for routine soil

testing, and the recovery rates of various P fractions are more variable with

this method than soil test P methods.
3.1.4 Optical measurements
3.1.4.1 Near-infrared reflectance spectroscopy
Near-infrared reflectance spectroscopy (NIRS) is an indirect analytical

method based on the development of empirical models that predict the con-

centration of a soil constituent from complex spectral data (Coûteaux et al.,

2003). Near-infrared radiation is absorbed by different chemical bonds

(e.g., CdH, OdH, NdH, C]O, SdH, CH2, and CdC) found in soil

constituents, and this absorption results in bending, twisting, stretching, or

scissoring of the bonds (Ludwig and Khanna, 2000). Although soil P has no

theoretical basis for NIRS prediction because it is not measured directly,

Chang et al. (2001) noted that soil available P may be predicted by NIRS

if it is related to primary properties such as SOM and texture. One of the

advantages of NIRS is that it may predict soil P, several other elements,

and chemical properties from a single spectrum (Viscarra Rossel et al.,

2006). Moreover, the fact that NIRS requires a single piece of equipment,

without chemical reagents, could make this method very attractive, consid-

ering the large number of samples that can be analyzed prior to each growing

season and even at the end of the season. Nduwamungu et al. (2009) per-

formed NIRS on 150 air-dried samples collected from a 15-ha site domi-

nated by Orthic Humic Gleysol and Gleyed Dystric Brunisol soils near

Montreal, Canada. The spectra were poorly calibrated with soil available

P (Mehlich-3 P) across all soil textures, probably due to the

pH-dependent solubility of P extracted by the acidic Mehlich-3 solution.
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More research is needed to assess the potential of NIRS for predicting

soil available P, perhaps with neutral or alkaline chemical extractants

(Abdi et al., 2012).

3.1.4.2 Electroultrafiltration
Electroultrafiltration (EUF) was introduced for routine soil analysis in late

1960s and early 1970s (Németh, 1985). At the time, the primary concern

was to define the EUF fraction that was related to the P concentration in

soil solution. Pot and field experiments demonstrated that soil available

P released by extraction with EUF at 20 �C and 200 V for 30 min was

related to P uptake during vegetative growth (Eifert et al., 1982; Grimme

and Németh, 1982). Simard and Tran (1993) were the first researchers in

North America to compare EUF with other extraction methods to predict

soil available P and response to P fertilizer with oat (Avena sativa L.) and

maize crops. They found that soil P desorbed by EUF after 30–55 min

was comparable to the soil available P concentration measured by chemical

extraction methods in soils from northeastern North America. Years later,

EUF was used with other extraction methods to investigate the

P-supplying power of the fine-textured soils from Abitibi-Temiscaming

(Quebec, Canada) by Ziadi et al. (2001). The EUF results (75 min desorp-

tion period) revealed a sizeable pool of inorganic P in these soils, which

explained the lack of response to P fertilizers of grass-based hayfields in this

region. In Pakistan, Taha et al. (1982) used the EUF method to determine

the P solubility and desorption rates at various soil depths throughout the

cotton growing season and found an increase in soluble P concentration dur-

ing the growing season, mostly associated with the slowly available P fraction

(10–30 min desorption period). In Nigeria, Akinrinde et al. (2006) found

that EUF was more useful in assessing soil available P than conventional soil

test P methods. Although EUF has potential for describing soil available P,

the major constraint to its adoption by analytical laboratories is the length of

time (up to 75 min desorption per sample) needed to quantify soil available

P by this method (Simard and Tran, 1993).

3.2. In situ measurements of soil available phosphorus
In situmeasurements of soil available P are made with anion exchange mem-

branes (AEMs) or resins. The first report of resins as a sink for P came from

Amer et al. (1955). The assumptions in their study were that the rate of

P sorption by resins depended solely on the rate of P desorption or
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dissolution from the matrix and not on the properties of the resin itself.

However, the first studies with resins proved inadequate for precise

characterization of soil available P because they did not account for a

phenomenon like diffusion (Abrams and Jarrell, 1992; Amer et al., 1955;

Skogley et al., 1990).

Mixed-bed ion-exchange resin sink enclosed in spherical porous mesh

bags was promoted as a way to use exchange resins as indicators of soil avail-

able P (Skogley et al., 1990). Sufficient resin was placed in the bag that it

effectively represented an infinite sink for P adsorption throughout the

experimental period. The porous bags could adsorb P for a long period of

time with the principal mechanism of sorption being equilibrium anion

exchange with a high-capacity exchanger. One constraint of these materials

was the difficulty to accurately account for diffusion processes. Their three-

dimensional spherical structure often resulted in two diffusion coefficients:

surface diffusion and internal diffusion. If these diffusion coefficients differ,

not all resin particles inside the bag interact with soil solution

P (Vaidyanathan and Talibudeen, 1970). This is problematic when resin-

exchangeable P is calculated on a per gram of resin basis or if resin bags

are not left in contact with the soil long enough to overcome diffusion lim-

itations (Bhadoria et al., 1991).

Stronger sinks for P were developed by Hsu and Rich (1960) and by

Robarge and Corey (1979), who affixed hydroxyl-Al to exchange resin.

Oxide-impregnated papers and synthetic resin membranes were also devel-

oped to measure soil available P and P ion supply (Sharpley, 1991; van der

Zee et al., 1987). These materials constitute true sinks for P because the

strong affinity between Al and Fe for P leads to the formation of essentially

nonreversible ligand bonds between the metal and phosphate anions. As

such, the P adsorbed on the membranes cannot return in the soil solution

but can only be dissolved using strong acids. Abrams and Jarrell (1992)

showed that resin-impregnated membranes bind a pool of P ions that is

strongly correlated to soil available P. According to Cooperband and

Logan (1994), resin-impregnated membranes hold promise for in situ mea-

surements of P fluxes because they are not limited by diffusion constraints.

The two-dimensional structure ensures greater contact with the soil and

therefore more exchange sites for sorbing P ions. The planar surface of

the resin-impregnated membranes also allows an easy calculation of the vol-

ume of soil with which they interact (Van Rees et al., 1990).

AEMs were tested for use in routine soil P testing on 135 soil samples,

representing a range of soil types in western Canada (Qian et al., 1992). The
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authors demonstrated that the soil available P concentration predicted by

AEM was significantly correlated with that from conventional soil test

P methods. The authors also demonstrated that P uptake by canola plants

was more closely correlated with AEM-P than with Olsen-extractable soil

P. These results are consistent with a study on 14 soils from Saskatchewan by

Schoenau and Huang (1991), which also demonstrated that the coefficients

of determination in equations predicting soil available P were nearly

identical with AEM, water-extractable P, and Olsen P and were also highly

correlated with P uptake by canola. Assessment of AEM-P- andMehlich-3-

extractable P in Humaquepts varying in clay content revealed that plant

P uptake was more closely related to AEM-P than to Mehlich-3 P,

suggesting AEM-P is a better indicator of soil available P in those soils

(Zheng et al., 2003). Cooperband and Logan (1994) measured in situ changes

in labile soil P with AEM and showed that the relationship was essentially

linear when solutions contained 0–2 mg P l–1, which was confirmed by a

later study showing that AEM gives a good measure of soluble and readily

desorbable P in low-P status soils and sediments (Cooperband et al., 1999).

The AEM was compared with soil test P methods using 32 soils from Gua-

temala with widely varying physicochemical and mineralogical properties

(Nuernberg et al., 1998). The study demonstrated that soil test P methods

were not suitable for soils containing apatites, while AEM gave better pre-

dictions of soil available P regardless of the soil type. In addition to being well

correlated with soil available P, AEM is cost-effective, simple, independent

of soil type, and therefore superior to the other analytical methods for soil

test P (Schoenau and Huang, 1991).

3.3. Isotopic dilution method to evaluate soil
available phosphorus

The use of radio isotopes in assessing soil available P and P uptake by crops

started in the early 1940s. The approach consists in labeling the orthophos-

phate ions of the soil solution with the radio isotopes 32P or 33P (Fardeau

et al., 1985). It is assumed that the orthophosphate ions with the three iso-

topes of P (33P, 32P, and 31P) have exactly the same behavior and are not

affected by isotopic discrimination during chemical, physical, or biological

reactions (Fardeau, 1993; Fardeau et al., 1985; Frossard et al., 2011).

The isotopic method provides quantitative data on P dynamics in the soil

and soil–plant system (Fardeau, 1996). A full characterization of soil available

P based on the determination of four factors in a single experiment can be

made. The intensity factor quantifies the chemical potential of P ions in the
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soil solution. The quantity factor estimates the quantity of P ions that are

instantaneously exchangeable at 1 min. Two capacity factors, one

“immediate” and the other “delayed,” are also determined simultaneously.

These four factors permit the application of a functional and dynamic model

for soil available P (Fardeau, 1996). Comparing with routine analytical

methods, chemical extractants used in soil test P analysis evaluate the

quantity factor, whereas water extraction measures the intensity factor only.

Although the isotopic dilution method allows quantification of intensity,

quantity, and capacity factors, it is not recommended in routine soil

analysis because of the radioactive nature of the 32P or 33P isotopes. How-

ever, the isotopic dilution method can be considered as the reference

method for assessing the suitability of other soil test P for routine determi-

nation of soil available P.

Two experimental techniques were developed to simultaneously assess

the intensity and the quantity factors in isotopic studies. These involve

manipulation of soil suspensions, made by suspending a mass of soil with

a volume of water and shaking the suspension for a known period until it

reaches steady state (point at which sorption and desorption fluxes are equal).

The first technique involves adding radio isotopes to steady-state soil suspen-

sions followed by a dilution period (Fardeau, 1981, 1993; Fardeau et al.,

1991). The second technique relies on adding P ions at increasing concen-

trations, followed by a contact period to reach the steady state, and then an

isotopic dilution experiment similar to the first technique (Barrow, 1979;

Chardon and Blaauw, 1998; Fardeau, 1981; Morel and Fardeau, 1991;

Morel et al., 1994; Schneider et al., 2003). The methodology used for run-

ning the isotopic dilution experiment is presented in Fig. 2.2, and interpre-

tation of results from isotopic dilution in the context of soil P modeling is

described in Section 4.1.
4. MODELING SOIL AVAILABLE PHOSPHORUS

Modeling soil available P allows researchers and practitioners to
describe P chemistry, transformations and removal from soil by plants,

and through hydrological processes, which improves our understanding

and management of P resources in agriculture and surrounding environ-

ments (Bar-Yosef, 2003). This section describes recent developments in

modeling soil P availability to crops, focusing on the case of a process-based

mass-balance model of soil available P in agroecosystems.



1.    Marking the solution
At t = 0, introduction of R (32PO4) in the
suspensions (1 g: 10 ml) at steady state.
The steady state is obtained by
shaking the nonmarked suspension
for 36 h.

2.  Solution to phase solide transfer
Sampling the suspension after three periods of diffusion
(4, 40, and 400 min)

3. Filtration

4a. Counting of 32PO4 ions 
in solution (r)

4b. Measuring ions P 
in solution (Cp)

5. Experimental value of Pr
Application of the principle of isotopic dilution at
steady state

with Qw = Cp × V / M and V / M = 10 L kg–1

Pr = Qw x (R – r) / r(R – r) / Pr = r / Qw

Figure 2.2 Flow chart of the isotopic dilutionmethod to determine diffusive soil P trans-
fers in the laboratory.
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4.1. Case study: Development of a process-based mass-
balance model to study soil available phosphorus in
sustainable cropping systems

4.1.1 Assumptions
In field crops and permanent grassland, P ions (Pi) in the soil solution rep-

resent about 1% of P taken up annually by crops and the remaining 99% is

derived from the soil solid phase (Grant et al., 2005). A simplified conceptual

model describing the dynamics of soil available P in grassland (Fig. 2.3) was

proposed by Messiga et al. (2012b). The model includes three P pools

and two fluxes to explain the annual P budget. Two P pools contribute

directly to the dynamic pool of soil available P: solution Pi and solid phase

Pi. Variations in solution Pi match annual variations in the P budget.

While Pi in the soil solution can be measured with the water extraction

method (Gallet et al., 2003; Messiga et al., 2010b; Morel et al., 2000;

Sissingh, 1971), it is difficult to estimate the quantity of soil solid phase Pi

because this Pi is desorbed and mixed with Pi already present in the soil solu-

tion. Calculating the flux of P transferred between the two phases permits

estimation of solution and solid phase Pi pools. Three approaches are used

to investigate the net or gross rates of Pi transferred between solid and solu-

tion phases: sorption/desorption, EUF, and isotopic dilution methods. For

simplicity, we present a case that focuses on the isotopic exchange approach

to determine the Pi flux. The isotopic dilution approach is similar to the

conventional sorption/desorption approach because (1) diffusive Pi (Pr) is



Kinetic Freundlich
Pr = vCp 

w
 tp,

Pr limit

P budget

Pr PTSP

Pr limit

Qw = 10 x Cp

PSHOOT

Ptot -Pr

Figure 2.3 Structure of the P-cycling model describing the dynamics of plant-available
soil P in grassland soils. The model includes three pools and two fluxes accounting for
annual P balances. The three pools are the amount of P ions in solution, Qw, calculated
by multiplying the P ions concentration in solution (CP) by the solution-to-soil ratio (10);
the amount of soil diffusive P (Pr) that buffers P ions in solution with time; and the total
soil P (Ptot). The transfer of P ions at the solid-to-solution interface is described by a
Freundlich kinetic equation that accounts for solution P ions, slow and fast kinetic trans-
fers. This equation controls the partitioning of P ions between soil solution and soil dif-
fusive P. The two P fluxes are P input, PTSP¼amount of P added by fertilizer (triple super
phosphate, 46% P2O5); P output, PSHOOT¼P removed in shoots at harvests. The P budget
is the difference between annual P inputs and annual P outputs (Messiga et al., 2012b).
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assessed as the quantity factor (Beckett and White, 1964), (2) the rate of Pr

transfer is the capacity factor, and (3) the 32P fraction remaining in solution

and the change in desorption rate factors are described as a power function

with time (Fardeau et al., 1985; Vadas et al., 2006).

4.1.2 Flux of Pi at the solid-to-solution interface
Several processes affect the flux of P at the solid-to-solution interface,

including precipitation–dissolution, adsorption–desorption, and mineraliza-

tion–immobilization (Frossard et al., 2000). The major process controlling

Pi transfer between solution and solid phase is diffusion across a concentra-

tion gradient (Barber, 1995; Fardeau, 1981). The amount of P moving

between the two phases is designated Pr (Stroia et al., 2007a), and it is in

equilibrium with Pi in the soil solution (Vadas et al., 2006). The Pr acts

as a reserve pool that replenishes the solution when Pi concentration is

depleted, for instance, due to plant P uptake, or a sink for excess P when

the concentration of Pi in the soil solution increases.
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4.1.3 Estimation of the gross amount of diffusive soil phosphorus
The gross rate of Pr transferred between solid-to-solution interface is deter-

mined experimentally on soil suspensions under steady-state conditions

(Fardeau et al., 1985; Frossard et al., 2011). Two experimental approaches

may be used. The first is conducted in two steps by coupling a sorption

experiment with isotopic dilution analysis and is appropriate for estimating

Pr in soils with little variability in their P status (e.g., from natural ecosys-

tems; Stroia et al., 2007a). The second approach relies on isotopic dilution

analysis only to estimate Pr and is adapted for soils with variable P status, such

as those with a history of P fertilizer applications. The latter approach was

used by Messiga et al. (2012b) to model soil available P in grassland fertilized

with N and P, and by Stroia et al. (2007b) to study the dynamics of Pr in two

grassland experiments. The factor Pr is determined by applying the dilution

principle to the isotopic composition (IC) of the different phases of the soil

suspension using the following relationship (4.1):

IC¼R� r

Pr
¼ r

10CP

ð4:1Þ

where 10 is the volume-to-mass ratio, CP is the concentration of Pi in solu-

tion, R is the radioactivity introduced into the solution at time t0, r is the

radioactivity remaining in solution after elapsed time t, R� r is the radioac-

tivity transferred into the solid phase after elapsed time t, and Pr is the dif-

fusive P. The experimental Pr values for all elapsed times during the isotopic

dilution study are then calculated with Eq. (4.2):

Pr¼ 10CP

R� r

r
ð4:2Þ

4.1.4 Process-based modeling of diffusive P ion transfer at the solid-
to-solution interface

According to Eqs. (4.1) and (4.2), for any elapsed time in the isotopic

dilution study, Pr and CP can be determined simultaneously in the same soil

suspension. The gross rate of Pr transfer is therefore a function of CP and

time, two important factors affecting the dynamics of P in the rhizosphere

of cultivated soils (Morel et al., 2000). Dynamics of Pr transfer at the solid-

to-solution interface is described mathematically using a deterministic

modeling approach, which combines different values of CP and isotopic

dilution kinetics (Fardeau et al., 1985; Frossard et al., 2011). The dynamics

of Pr transfer is accurately described by a Freundlich kinetic equation (4.3):
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Pr¼ v�Cw
P � tp, with Pr<PrLIMIT ð4:3Þ
where Pr (mg P kg–1) is the gross amount of diffusive P; CP (mg P l–1) is the

concentration of P ion in solution; t (min) is the time of transfer; and v, w,

and p are fitted parameters. The v-parameter is the Pr value at time t¼1 min

and forCP¼1 mg P l–1, the w-parameter describes the nonlinear increase in

Pr with CP, and p-parameter describes the nonlinear increase in Pr with

time. The Pr value can be calculated at any time during the isotopic dilution

study, but it is limited by an unknown value, the PrLIMIT, which is lower

than the total inorganic P concentration in soil (Frossard et al., 2011).

This mathematical function has been tested under various experimental

conditions, and the parameterized Freundlich kinetic function is used to

extrapolate the gross amount of Pr from short-term isotopic dilution studies

to longer periods, months to years (Achat et al., 2010; Fardeau et al., 1985;

Frossard et al., 1994;Messiga, 2010;Messiga et al., 2012b;Morel et al., 1994;

Némery et al., 2004; Stroia et al., 2007a,b). It is desirable to have an estimate

of Pr for longer period of time because this accounts for both the rapid and

slow reactions of Pi between solid and solution phases for better understand-

ing of soil P dynamics.

4.1.4.1 Influence of soil properties on the kinetics of diffusive soil P transfer
Soil properties vary at relatively small spatial scales, and this affects estimates of

diffusive soil P transfers. Consequently, Stroia et al. (2007a) recommended

parameterizing the kinetic Freundlich function for soil samples on a plot-

by-plot basis to better characterize the immediate and slow Pi reactions and

account for variability among experimental plots. Stroia et al. (2011) also dem-

onstrated that N fertilization significantly changes the dynamics of Pr in the

0- to 5-cm soil layer of grassland in the French Pyrenees following 6 years

of cultivation. In a timothy grassland in eastern Canada, Messiga et al.

(2012b) showed that Pr dynamics were not affected by N fertilization after

9 years of cultivation, based on soil samples collected from the 0- to 15-cm

soil layer. These contrasting results may be due to a dilution effect caused

by choice of soil depth, but illustrates the need for additional studies to eval-

uate how soil properties affect the kinetics of Pr transfer.

4.1.5 Assessment of soil available phosphorus using a process-based
mass-balance model

The principle supporting field-scale mass-balancemodels is that soil available

P increases if the P budget (difference between P imported and P exported)

is positive, decreases if the P budget is negative, and remains constant if the

P budget is zero. Several long-term studies in field crops and grasslands show
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a linear relationship between soil available P and P budgets (Boniface and

Trocmé, 1988; Ciampitti et al., 2011; Messiga et al., 2010b, 2012b). Most

of these studies relied on soil test P as an indicator of soil available P, which

does not differentiate between solution Pi and Pr. Field-scale mass-balance

models often rely on soil P indices (Meals et al., 2008; Vadas et al., 2008)

or P sorption coefficients (Vadas and Sims, 2002; Vadas et al., 2006) that

are derived from sorption–desorption experiments.Thus, they donot consider

the continuum of Pi forms in the soil solution that are immediately available

and Pr that serves as a reserve pool that is described with kinetic functions

(Lookman et al., 1995). This shortcoming can be overcome by integrating

the parameterized Freundlich kinetic equation in the P budget. This

process-based approach considers Pi in the solution, Pr of the solid phase,

and the rate of transfer between the two phases which is triggered by fluctu-

ations in the P budget. The development of a process-based mass-balance

model permits researchers to simulate the solution Pi dynamics throughout

the cultivation period, thereby advancing our understanding of P-cycling in

managed agroecosystems.

The process-based mass-balance model was first presented by Gallet et al.

(2003), who demonstrated that for six arable trials (>9 years in duration), the

isotopic exchange kinetics parameters and P exchangeable within 1 min could

be estimated from the values measured at the beginning of the trial and the

cumulative P budget. In a long-termmaize monoculture of 17 years in south-

ern France, this model was successfully used to simulate the solution Pi values

on a yearly basis for several P fertilizer treatments (Messiga, 2010). Model sim-

ulations were affected by the diffusive P transfer period, which varies between

1 and 5 years. Soil available P (Pi and Pr) dynamics in a long-term grassland in

eastern Canada were modeled successfully with diffusive P transfer periods of

2–3 months (Messiga et al., 2012b). A similar approach to describe soil avail-

able P in Podzols from five Maritime pine stands in the forest range of the

“Landes de Gascogne” in southwestern France showed that Pr values were

between 1.4% and 4.4% of total inorganic P in soil, considering a diffusive

P transfer period of 1 year (Achat et al., 2010). Messiga et al. (2012b) stressed

the importance of knowing the fraction of total inorganic P in soil, which

enables a more reasonable estimate of Pr and sets the length of the transfer

period used in the Freundlich kinetic equation.
5. CONCLUSIONS AND FUTURE WORK

Soil available P is the principal pool that supplies crop P requirements
and is susceptible to transport in the environment through hydrological
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pathways (runoff and leaching). Agronomists can rely on soil test P values to

calculate fertilizer P recommendations for a particular region. However,

these simple measures do not provide much information about the size

and dynamics of the soil available P pool, which can vary within and

between agricultural fields due to site-specific soil properties such as pH

and interactions between soil microbiota and crops, current and historical

agricultural management practices, and environmental conditions. If soil test

P values are to be incorporated in watershed- and landscape-scale hydrolog-

ical models for environmental protection, thosemeasurements should reflect

the actual dynamics of the soil available P pool for the best possible predic-

tions. These considerations support the integration of process-based kinetic

measurements into P budget models, and examples of integrated process-

based mass-balance models were described in this review.

Selection of an appropriate method for determining soil available P is

another topic that deserves further research. Most routine methods used

by analytical laboratories assume that Pi associated with the soil solid phase

is the major reserve pool that enters the soil solution and select chemical

extractants that desorb this Pi pool. This is probably a good assumption

for soils with a history of mineral P fertilization but remains to be validated

for temperate soils that have received organic P fertilizer over the longer

term (e.g., from manure and other organic materials) as well as tropical soils

that rely on weathering and mineralization of organic materials as sources of

soil available P. The isotopic dilution method could directly measure Pr

derived from primary minerals, secondary minerals, and organic matter,

thereby alleviating the shortcomings of traditional soil test P methods, but

would require modifications of the Freundlich kinetic equation or a mixing

model to partition the Pr among various sources. Further research on this

topic is suggested to develop models of soil available P that consider the con-

tribution of both inorganic and organic P compounds to crop nutrition, for

sustainable cropping systems around the world.
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structure mamellaire. Agronomie 1, 1–13.

Fardeau, J.C., 1996. Dynamics of phosphate in soils. An isotopic outlook. Fertil. Res. 45,
91–100.
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